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Outline

SDCs are all the rage, but:
Failstop failures are not going away

We need schemes to handle them both

— “all bets are off’” - nathan (not true: we can combine both)

RTS based solutions can isolate applications from having to
deal with failures

— Somehow, no talk covered this

Overdecomposition based solutions contribute some unique
solutions/enhancements

Checkpoint/restart (charm++ has been supporting fault
detection and automatic restart for 5+ years now)
— Optimized by non-blocking protocols

— Burst buffers?? We can do without for many apps.. Reuse the memory
(make it multi-purpose)

— Many apps have relatively small mem footprint at checkpoint
— These can be combined with SDC detection schemes

But the real fun is message-logging schemes
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 MPI + X

« “Task Models”
— Asynchrony q NIPI+X

« Overdecomposition: Task
. Models
— Most adaptivity
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A Runtime System based on
Over-decomposition and
Migratability
can support resilience effetively
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Runtime Systems can play a role

e RTS based solutions to resilience are
desirable
— They insulate the application from failures

— RTS has information about the the machine
status and application status

— Applications can provide information to the RTS
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Failstop Faults

« Silent Data Corruption is what everyone is
talking about
— It is important
— But failstop faults are not going away
— We need to handle them both
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Progress Rate is the right metric

« Compared with
— distributed systems theory, or
— a mission to mars, or
— real-time systems

HPC needs are different

— We will accept a small probability of failure
* In that case, we will redo the simulation

— But we care about application making progressin
presence of faults
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Power consumption
1S continuous

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures



Fault Tolerance in Charm++/AMPI

 Four approaches available:
— Disk-based checkpoint/restart

— In-local-storage double checkpoint w auto
restart

« Demonstrated on 64k cores
— Proactive object migration

— Message-logging: scalable fault tolerance
« Can tolerate frequent faults

« Parallel restart and potential for handling faults during
recovery
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In-memory checkpointing

Actually: In local-storage double checkpoint, with
automatic failure detection and restart

Is practical for many apps

— Relatively small footprint at checkpoint time

Very fast times...

Demonstration challenge:
— Works fine for clusters

— For MPI-based implementations running at centers:
« Scheduler does not allow job to continue on failure
« Communication layers not fault tolerant

— Fault injection: dieNow(),
— Spare processors
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Checkpoint Time — Intrepid(leanMD)
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Restart Time — Intrepid(leanMD)
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Checkpoint Time — Jaguar(Jacobi)
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Extensions to fault recovery

« Based on the same over-decomposition ideas

— A surprisingly large number of applications have
low memory footprint at checkpoint

— But, if not:

— Use NVRAM instead of DRAM for checkpoints

 Non-blocking variants
« [Cluster 2012] Xiang Ni et al.
— Replica-based soft-and-hard-error handling

« As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.
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Scalable Fault tolerance

« Faults will be frequent at exascale (true??)
— Failstop, and soft failures are both important

 Checkpoint-restart may not scale
— Or will it?

— Requires all nodes to roll back even when just
one fails

 Inefficient: computation and power
— As MTBF goes lower, it becomes infeasible
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Message-Logging

e Basic ldea:

— Only the processes/objects on the failed node go
back to the checkpoint!

— Messages are stored by senders during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “resent” messages to regain
state

« Does it help at exascale?
— Not really, or only a bit: Same time for recovery!

« But with over-decomposition,

— work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well
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- Power consumption
1s lower during

recovery

Message logging +
Object-based
virtualization

Progress 1s faster
with failures
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Fail-stop recovery with message logging: A research vision
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Application progress
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* A fault hits a node

* [t regresses..

 [ts objects start re-execution,
 IN PARALLEL on

neighboring nodes!
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* Re-execution continues even as
other nodes continue forward

* Due to “parallel re-execution”
the neighborhood catches up
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Back to normal execution

» PPL

UIuc



.

M
[T

T

Another fault
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* Even as its neighborhood 1s
helping recover,

« A 3 fault hits

* Concurrent recovery 1s possible
as long as the two failed nodes
are not checkpoint buddies
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Takeaway

Adaptive Runtime System is a good layer to
implement resilience strategies

— Especially with over-decomposition
In-local-memory double checkpoint with
automatic restart works well

If we need to tolerate more frequent failures

— Message logging with parallel restart and
handling of most concurrent failures will do the
job

Need to combine with SDC handling

» PPL



